A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation
نویسندگان
چکیده
This work extends the previous two-dimensional compact scheme for the Cahn–Hilliard equation (Lee et al., 2014) to three-dimensional space. The proposed scheme, derived by combining a compact formula and a linearly stabilized splitting scheme, has second-order accuracy in time and fourth-order accuracy in space. The discrete system is conservative and practically stable. We also implement the compact scheme in a three-dimensional adaptive mesh refinement framework. The resulting system of discrete equations is solved by using a multigrid. We demonstrate the performance of our proposed algorithm by several numerical experiments. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Isogeometric Analysis of the Cahn-Hilliard phase-field model
The Cahn-Hilliard equation involves fourth-order spatial derivatives. Finite element solutions are not common because primal variational formulations of fourthorder operators are well defined and integrable only if the finite element basis functions are piecewise smooth and globally C1-continuous. There are a very limited number of two-dimensional finite elements possessing C1-continuity applic...
متن کاملAn H Convergence of a Second-order Convex-splitting, Finite Difference Scheme for the Three-dimensional Cahn–hilliard Equation∗
In this paper we present an unconditionally solvable and energy stable second order numerical scheme for the three-dimensional (3D) Cahn–Hilliard (CH) equation. The scheme is a twostep method based on a second order convex splitting of the physical energy, combined with a centered difference in space. The equation at the implicit time level is nonlinear but represents the gradients of a strictl...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملMicrophase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation.
We investigate microphase separation patterns on curved surfaces in three-dimensional space by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete narrow band grid that neighbors the curved surface. Using the closest point method, we apply ...
متن کاملA second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation
We propose a novel second order in time numerical scheme for Cahn-Hilliard-NavierStokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Physics Communications
دوره 200 شماره
صفحات -
تاریخ انتشار 2016